top of page

Prenylated retinal ciliopathy protein RPGR interacts with PDE6B and regulates ciliary localization of Joubert syndrome-associated protein INPP5E

Kollu Rao, Wei Zhang, Linjing Li, Manisha Anand, Hemant Khanna | Human Molecular Genetics | Vol. 25 (20) | 4533 - 4545 | 2016  October 15 | doi.org/10.1093/hmg/ddw281



Abstract

Ciliary trafficking defects underlie the pathogenesis of severe human ciliopathies, including Joubert Syndrome (JBTS), Bardet-Biedl Syndrome, and some forms of retinitis pigmentosa (RP). Mutations in the ciliary protein RPGR (retinitis pigmentosa GTPase regulator) are common causes of RP-associated photoreceptor degeneration worldwide. While previous work has suggested that the localization of RPGR to cilia is critical to its functions, the mechanism by which RPGR and its associated cargo are trafficked to the cilia is unclear. Using proteomic and biochemical approaches, we show that RPGR interacts with two JBTS-associated ciliary proteins: PDE6δ (delta subunit of phosphodiesterase; a prenyl-binding protein) and INPP5E (inositol polyphosphate-5-phosphatase 5E). We find that PDE6δ binds selectively to the C-terminus of RPGR and that this interaction is critical for RPGR’s localization to cilia. Furthermore, we show that INPP5E associates with the N-terminus of RPGR and trafficking of INPP5E to cilia is dependent upon the ciliary localization of RPGR. These results implicate prenylation of RPGR as a critical modification for its localization to cilia and, in turn suggest that trafficking of INPP5E to cilia depends upon the interaction of RPGR with PDE6δ. Finally, our results implicate INPP5E, a novel RPGR-interacting protein, in the pathogenesis of RPGR-associated ciliopathies.


Introduction

Cilia are microtubule-based membranous extensions of the apical plasma membrane (1) that serve as critical signalling nodes of diverse developmental processes, including sensory perception (2,3). As such, ciliary dysfunction due to mutations in ciliary proteins or trafficking of ciliary cargo is associated with severe human disorders, called ciliopathies. These include Meckel-Gruber Syndrome, Joubert Syndrome (JBTS), Bardet-Biedl Syndrome, and Usher Syndrome. Although these disorders differ in their age of onset and severity, they share common phenotypic features, including retinal degeneration due to defects in photoreceptor development and maintenance (4–6).


Photoreceptors are polarized sensory neurons with distinct inner segments involved in protein synthesis and trafficking, and photosensory outer segments (OS) (7,8). A photoreceptor OS extends from the apical region of the inner segment in the form of a microtubule based axoneme and contains stacks of membranous discs loaded with proteins involved in light detection. The region between the apical inner segment and the base of the OS is termed the connecting cilium, which is analogous to the transition zone (TZ) of primary cilia (9). The TZ is involved in regulating the composition of the OS. Commensurate with this role, proteins localized to the TZ are involved in regulating the composition of the photoreceptor cilia (6).


RPGR, is a ciliary TZ protein and has been suggested to regulate ciliary trafficking in photoreceptors (10). Mutations in RPGR result in severe photoreceptor degenerative diseases (11–15), the most prevalent of which is X-linked RP, a disorder characterized by progressive vision loss, usually by the third decade of life (16–24). RPGR mutations also account for 15–20% of simplex RP in males, making it a common cause of RP (17).


There are two major isoforms of RPGR: RPGRconst, a 19 exon constitutive transcript encoding a protein of 815 amino acids, and RPGRORF15, encoded by 15 exons (1152 amino acids) (21,22,25). The RPGRORF15 isoform shares exons 1-15 with the RPGRconst isoform; however, it continues into and terminates in intron 15. The terminal exon of this isoform is also termed ORF15. Although RPGRORF15 contains fewer exons, it is longer than RPGRconst because the length of exon ORF15 is greater than the combined length of exons 16-19 of RPGRconst. A schematic representation of these isoforms is depicted in Supplementary Material, Figure 1A and B.


Figure 1

Localization of RPGR domains to cilia. (A) hTERT-RPE1 cells were transiently transfected with constructs encoding the indicated GFP-fused RPGR proteins. After cilia formation, cells were fixed and stained with anti-GFP (green) and anti-ARL13B (red; cilia marker). Arrows in Merge point to ciliary staining (yellow, if co-localization; red, if no co-localization with ARL13B). Inset depicts enlarged view of ciliary staining of the cells. (B) Quantification of GFP-positive cilia is represented in the lower panel. One-way ANOVA analysis was performed to calculate the statistical significance of the differences in GFP-positive cilia. ***: P < 0.0001. AU: arbitrary units. Number (n) of cells analysed in this experiment: >200.



 

Reference

Pedersen L.B. Veland I.R. Schroder J.M. Christensen S.T. (2008) Assembly of primary cilia. Dev. Dyn., 237, 1993–2006.

Singla V. Reiter J.F. (2006) The primary cilium as the cell's antenna: signaling at a sensory organelle. Science, 313, 629–633.

Pazour G.J. Witman G.B. (2003) The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell. Biol., 15, 105–110.

Adams N.A. Awadein A. Toma H.S. (2007) The retinal ciliopathies. Ophthalmic Genet., 28, 113–125.

Badano J.L. Mitsuma N. Beales P.L. Katsanis N. (2006) The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet., 7, 125–148.

Khanna H. (2015) Photoreceptor Sensory Cilium: Traversing the Ciliary Gate. Cells, 4, 674–686.

Wang J. Deretic D. (2014) Molecular complexes that direct rhodopsin transport to primary cilia. Prog. Retin. Eye Res., 38, 1–19.

Kandel E.R. (2013) Principles of neural science. McGraw-Hill, New York.

Besharse J.C. Bok D. (2011) The retina and its disorders. Academic Press, Amsterdam; Boston.

Rao K.N. Li L. Anand M. Khanna H. (2015) Ablation of retinal ciliopathy protein RPGR results in altered photoreceptor ciliary composition. Sci. Rep., 5, 11137.

Zhang Q. Acland G.M. Wu W.X. Johnson J.L. Pearce-Kelling S. Tulloch B. Vervoort R. Wright A.F. Aguirre G.D. (2002) Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration. Hum. Mol. Genet., 11, 993–1003.

Hong D.H. Pawlyk B.S. Shang J. Sandberg M.A. Berson E.L. Li T. (2000) A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc. Natl Acad. Sci. U S A, 97, 3649–3654.

Huang W.C. Wright A.F. Roman A.J. Cideciyan A.V. Manson F.D. Gewaily D.Y. Schwartz S.B. Sadigh S. Limberis M.P. Bell P. , et al. . (2012) RPGR-associated retinal degeneration in human X-linked RP and a murine model. Invest. Ophthalmol. Vis. Sci., 53, 5594–5608.

Thompson D.A. Khan N.W. Othman M.I. Chang B. Jia L. Grahek G. Wu Z. Hiriyanna S. Nellissery J. Li T. , et al. . (2012) Rd9 is a naturally occurring mouse model of a common form of retinitis pigmentosa caused by mutations in RPGR-ORF15. PLoS One, 7, e35865.

Ghosh A.K. Murga-Zamalloa C.A. Chan L. Hitchcock P.F. Swaroop A. Khanna H. (2010) Human retinopathy-associated ciliary protein retinitis pigmentosa GTPase regulator mediates cilia-dependent vertebrate development. Hum.Mol. Genet., 19, 90–98.

Bird A.C. (1975) X-linked retinitis pigmentosa. Br. J. Ophthalmol., 59, 177–199.

Churchill J.D. Bowne S.J. Sullivan L.S. Lewis R.A. Wheaton D.K. Birch D.G. Branham K.E. Heckenlively J.R. Daiger S.P. (2013) Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci., 54, 1411–1416.

Fishman G.A. (1978) Retinitis pigmentosa. Genetic percentages. Arch. Ophthalmol., 96, 822–826.

Fishman G.A. Farber M.D. Derlacki D.J. (1988) X-linked retinitis pigmentosa. Profile of clinical findings. Arch. Ophthalmol., 106, 369–375.

Heckenlively J.R. Yoser S.L. Friedman L.H. Oversier J.J. (1988) Clinical findings and common symptoms in retinitis pigmentosa. Am. J. Ophthalmol., 105, 504–511.

Meindl A. Dry K. Herrmann K. Manson F. Ciccodicola A. Edgar A. Carvalho M.R. Achatz H. Hellebrand H. Lennon A. , et al. . (1996) A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat. Genet., 13, 35–42.

Roepman R. van Duijnhoven G. Rosenberg T. Pinckers A.J. Bleeker-Wagemakers L.M. Bergen A.A. Post J. Beck A. Reinhardt R. Ropers H.H. , et al. . (1996) Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1. Hum. Mol. Genet., 5, 1035–1041.

Sharon D. Bruns G.A. McGee T.L. Sandberg M.A. Berson E.L. Dryja T.P. (2000) X-linked retinitis pigmentosa: mutation spectrum of the RPGR and RP2 genes and correlation with visual function. Invest. Ophthalmol. Vis. Sci., 41, 2712–2721.

Sharon D. Sandberg M.A. Rabe V.W. Stillberger M. Dryja T.P. Berson E.L. (2003) RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa. Am. J. Hum. Genet., 73, 1131–1146.

Vervoort R. Lennon A. Bird A.C. Tulloch B. Axton R. Miano M.G. Meindl A. Meitinger T. Ciccodicola A. Wright A.F. (2000) Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat. Genet., 25, 462–466.

He S. Parapuram S.K. Hurd T.W. Behnam B. Margolis B. Swaroop A. Khanna H. (2008) Retinitis pigmentosa GTPase regulator (RPGR) protein isoforms in mammalian retina: Insights into X-linked retinitis pigmentosa and associated ciliopathies. Vision Res., 48, 366–376.

Murga-Zamalloa C.A. Atkins S.J. Peranen J. Swaroop A. Khanna H. (2010) Interaction of retinitis pigmentosa GTPase regulator (RPGR) with RAB8A GTPase: implications for cilia dysfunction and photoreceptor degeneration. Hum. Mol. Genet., 19, 3591–3598.

Khanna H. Davis E.E. Murga-Zamalloa C.A. Estrada-Cuzcano A. Lopez I. den Hollander A.I. Zonneveld M.N. Othman M.I. Waseem N. Chakarova C.F. , et al. . (2009) A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat. Genet., 41, 739–745.

Linari M. Ueffing M. Manson F. Wright A. Meitinger T. Becker J. (1999) The retinitis pigmentosa GTPase regulator, RPGR, interacts with the delta subunit of rod cyclic GMP phosphodiesterase. Proc. Natl Acad. Sci. U S Aa, 96, 1315–1320.

Roepman R. Bernoud-Hubac N. Schick D.E. Maugeri A. Berger W. Ropers H.H. Cremers F.P. Ferreira P.A. (2000) The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors. Hum. Mol. Genet., 9, 2095–2105.

Chang B. Khanna H. Hawes N. Jimeno D. He S. Lillo C. Parapuram S.K. Cheng H. Scott A. Hurd R.E. , et al. . (2006) In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet., 15, 1847–1857.

Khanna H. Hurd T.W. Lillo C. Shu X. Parapuram S.K. He S. Akimoto M. Wright A.F. Margolis B. Williams D.S. , et al. . (2005) RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. J. Biol. Chem., 280, 33580–33587.

Murga-Zamalloa C.A. Desai N.J. Hildebrandt F. Khanna H. (2010) Interaction of ciliary disease protein retinitis pigmentosa GTPase regulator with nephronophthisis-associated proteins in mammalian retinas. Mol. Vis., 16, 1373–1381.

Anand M. Khanna H. (2012) Ciliary transition zone (TZ) proteins RPGR and CEP290: role in photoreceptor cilia and degenerative diseases. Expert Opin. Ther. Targets, 16, 541–551.

Da Costa R. Glaus E. Tiwari A. Kloeckener-Gruissem B. Berger W. Neidhardt J. (2015) Localizing the RPGR protein along the cilium: a new method to determine efficacies to treat RPGR mutations. Gene Ther., 22, 413–420.

Zhao Y. Hong D.H. Pawlyk B. Yue G. Adamian M. Grynberg M. Godzik A. Li T. (2003) The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc. Natl Acad. Sci. U S Aa, 100, 3965–3970.

Yan D. Swain P.K. Breuer D. Tucker R.M. Wu W. Fujita R. Rehemtulla A. Burke D. Swaroop A. (1998) Biochemical characterization and subcellular localization of the mouse retinitis pigmentosa GTPase regulator (mRpgr). J. Biol. Chem., 273, 19656–19663.

Lee J.J. Seo S. (2015) PDE6D binds to the C-terminus of RPGR in a prenylation-dependent manner. EMBO Rep., 16, 1581–1582.

Glomset J.A. Farnsworth C.C. (1994) Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu. Rev. Cell Biol., 10, 181–205.

Reiss Y. Goldstein J.L. Seabra M.C. Casey P.J. Brown M.S. (1990) Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell, 62, 81–88.

Zhang F.L. Casey P.J. (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem., 65, 241–269.

Zhang F.L. Kirschmeier P. Carr D. James L. Bond R.W. Wang L. Patton R. Windsor W.T. Syto R. Zhang R. , et al. . (1997) Characterization of Ha-ras, N-ras, Ki-Ras4A, and Ki-Ras4B as in vitro substrates for farnesyl protein transferase and geranylgeranyl protein transferase type I. J. Biol. Chem., 272, 10232–10239.

Baehr W. (2014) Membrane protein transport in photoreceptors: the function of PDEdelta: the Proctor lecture. Invest Ophthalmol. Vis. Sci., 55, 8653–8666.

Humbert M.C. Weihbrecht K. Searby C.C. Li Y. Pope R.M. Sheffield V.C. Seo S. (2012) ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc. Natl Acad. Sci. U S Aa, 109, 19691–19696.

Zhang H. Li S. Doan T. Rieke F. Detwiler P.B. Frederick J.M. Baehr W. (2007) Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc. Natl Acad. Sci. U S Aa, 104, 8857–8862.

Thomas S. Wright K.J. Le Corre S. Micalizzi A. Romani M. Abhyankar A. Saada J. Perrault I. Amiel J. Litzler J. , et al. . (2014) A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum. Mutat., 35, 137–146.

Bielas S.L. Silhavy J.L. Brancati F. Kisseleva M.V. Al-Gazali L. Sztriha L. Bayoumi R.A. Zaki M.S. Abdel-Aleem A. Rosti R.O. , et al. . (2009) Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet., 41, 1032–1036.

Watzlich D. Vetter I. Gotthardt K. Miertzschke M. Chen Y.X. Wittinghofer A. Ismail S. (2013) The interplay between RPGR, PDEdelta and Arl2/3 regulate the ciliary targeting of farnesylated cargo. EMBO Rep., 14, 465–472.

Fansa E.K. O'Reilly N.J. Ismail S. Wittinghofer A. (2015) The N- and C-terminal ends of RPGR can bind to PDE6δ. EMBO Rep, 16, 1583–1585.

Chapple J.P. Hardcastle A.J. Grayson C. Willison K.R. Cheetham M.E. (2002) Delineation of the plasma membrane targeting domain of the X-linked retinitis pigmentosa protein RP2. Invest. Ophthalmol. Vis. Sci., 43, 2015–2020.

Yoon J.H. Qiu J. Cai S. Chen Y. Cheetham M.E. Shen B. Pfeifer G.P. (2006) The retinitis pigmentosa-mutated RP2 protein exhibits exonuclease activity and translocates to the nucleus in response to DNA damage. Exp. Cell Res., 312, 1323–1334.

Hanke-Gogokhia C. Wu Z. Gerstner C.D. Frederick J.M. Zhang H. Baehr W. (2016) Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors. J. Biol. Chem., 291, 7142–7155.

Young R.W. (1967) The renewal of photoreceptor cell outer segments. J. Cell Biol., 33, 61–72.

Young R.W. (1968) Passage of newly formed protein through the connecting cilium of retina rods in the frog. J. Ultrastruct. Res., 23, 462–473.

Jacoby M. Cox J.J. Gayral S. Hampshire D.J. Ayub M. Blockmans M. Pernot E. Kisseleva M.V. Compere P. Schiffmann S.N. , et al. . (2009) INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet., 41, 1027–1031.

Rao K.N. Li L. Zhang W. Brush R.S. Rajala R.V.S. Khanna H. (2016) Loss of human disease protein retinitis pigmentosa GTPase regulator (RPGR) differentially affects rod or cone-enriched retina. Hum Mol Genet, 25, 1345–1356.

Choi H. Larsen B. Lin Z.Y. Breitkreutz A. Mellacheruvu D. Fermin D. Qin Z.S. Tyers M. Gingras A.C. Nesvizhskii A.I. (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat. Methods, 8, 70–73.

Li L. Anand M. Rao K.N. Khanna H. (2015) Cilia in photoreceptors. Methods Cell Biol., 127, 75–92.

תגובות


bottom of page